These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dredging method effects on sediment resuspension and nutrient release across the sediment-water interface in Lake Taihu, China. Author: Chen C, Kong M, Wang YY, Shen QS, Zhong JC, Fan CX. Journal: Environ Sci Pollut Res Int; 2020 Jul; 27(21):25861-25869. PubMed ID: 31420838. Abstract: Environmental sediment dredging is one of the most common methods for the remediation of contaminated sediments in lakes; however, debate continues as to whether the effectiveness of dredging methods contributes to this phenomenon. To determine sediment resuspension and nutrient release following dredging with a variety of dredging methods, four dredging treatments at wind speeds of 0-5.2 m/s were simulated in this study, namely suction dredging (SD), grab dredging (GD), ideal dredging with no residual sediments (ID), and non-dredging (ND). Field sediments from suction and grab dredging areas (including post-dredged and non-dredged sediments) of Lake Taihu were used to assess the release abilities of soluble reactive phosphorus (SRP) and ammonia nitrogen (NH4+-N) from the sediment-water interface. The effects of residual sediments on nutrient concentrations in water were also evaluated. The results reveal that inhibition of resuspension of particulate matter and nutrients released through sediment dredging decreases with increasing levels of residual sediment. Total suspended particulate matter content in the mean water columns of ID, SD, and GD under wind-induced disturbance (1.7-5.2 m/s) decreased by 67.5%, 56.8%, and 44.3%, respectively; total nitrogen and total phosphorus in ID (SD) treatments were 19.8% (12.9%) and 24.5% (11.2%) lower than that in ND treatment. However, there were ~ 1.6 and 1.5 times higher SRP and NH4+-N in the GD treatment compared with the ND treatment at the end of the resuspension experiment (0 m/s). A significant increase in the SRP and NH4+-N release rates at the sediment-water interface was also observed in field sediments from a grab dredging area, indicating that GD may pose a short-term risk of nutrient release to the water body. Hence, dredging methods with less residual sediments both during and after dredging improves the dredging quality.[Abstract] [Full Text] [Related] [New Search]