These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Author: Sun D, Lin X, Lu J, Wei P, Luo Z, Lu X, Chen Z, Zhang L. Journal: Biosens Bioelectron; 2019 Oct 01; 142():111578. PubMed ID: 31422223. Abstract: The sensitive and accurate detection of cardiac troponin I (cTnI) is critical for myocardial infarction diagnosis. In this work, a dual-aptamer-based electrochemical (EC) biosensor was designed for cTnI detection based on the DNA nanotetrahedron (NTH) capture probes and multifunctional hybrid nanoprobes. First, the NTH-based Tro4 aptamer probes were anchored on a screen printed gold electrode (SPGE) surface through the Au-S bond, providing an enhanced spatial dimension and accessibility for capturing cTnI. Then, the hybrid nanoprobes were fabricated by using magnetic Fe3O4 nanoparticles as nanocarriers to load a large amount of cTnI-specific Tro6 aptamer, natural horseradish peroxidase (HRP), HRP-mimicking Au@Pt nanozymes and G-quadruplex/hemin DNAzyme. This signaling nanoprobes are capable of specifically recognizing the target cTnI based on the Tro6 aptamer and amplifying the signals to improve the detection sensitivity via enzymatic processes. We found the remarkable enhanced effect of EC signal to be attributed to the co-catalysis effect of hybrid nanozymes, HRP and DNAzyme. The target cTnI was sandwiched between the two types of aptamers (Tro4 and Tro6) on the electrode interface. Finally, this EC aptasensing platform exhibited great analytical performance with a wide dynamic range of 0.01-100 ng mL-1 and a low detection limit of 7.5 pg mL-1 for cTnI. The high selectivity, sensitivity and reliability of EC aptasensor can provide great potential in the clinic disease diagnostics.[Abstract] [Full Text] [Related] [New Search]