These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa.
    Author: Padhi S, Grimes MM, Muro-Villanueva F, Ortega JL, Sengupta-Gopalan C.
    Journal: Planta; 2019 Nov; 250(5):1743-1755. PubMed ID: 31422508.
    Abstract:
    In alfalfa, the B form of Sucrose phosphate synthase synthesizes sucrose in the leaves while the A form participates in regulatory cycles of synthesis/breakdown of sucrose/starch in the root nodules. Sucrose (Suc) is the major stable product of photosynthesis that is transported to all heterotrophic organs as a source of energy and carbon. The enzyme sucrose phosphate synthase (SPS) catalyzes the synthesis of Suc. Besides the leaves, SPS is also found in heterotrophic organs. There are two isoforms of SPS in alfalfa (Medicago sativa): SPSA and SPSB. While SPSA is expressed in the vasculature of all the organs and in the N2-fixing zone in the nodules, SPSB is exclusively expressed in the photosynthetic cells. Two classes of alfalfa transformants were produced, one with a gene construct consisting of the alfalfa SPSA promoter and the other with the SPSB promoter-both driving the maize SPS coding region-referred to as SPSA-ZmSPS and SPSB-ZmSPS, respectively. Both classes of transformants showed increased growth compared to control plants. The SPSB-ZmSPS transformants showed increased SPS protein levels and activity along with a significant increase in the Suc levels in the leaves. The SPSA-ZmSPS transformants showed an increase in the SPS protein level and enzyme activity both in the leaves and the nodules with no increase in Suc content in the leaves but a substantial increase in the nodules. Both SPSA and SPSB have unique roles in the nodules (sink) and leaves (source). SPSB is responsible for the synthesis of Suc in the photosynthetic cells and SPSA participates in a regulatory cycle in which Suc is simultaneously degraded and re-synthesized; both these functions contribute to plant growth in rhizobia nodulated alfalfa plants.
    [Abstract] [Full Text] [Related] [New Search]