These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal of aqueous fluoroquinolones with multi-functional activated carbon (MFAC) derived from recycled long-root Eichhornia crassipes: batch and column studies. Author: Liu L, Chen X, Wang Z, Lin S. Journal: Environ Sci Pollut Res Int; 2019 Nov; 26(33):34345-34356. PubMed ID: 31428965. Abstract: Fluoroquinolones (FQs) occur broadly in natural media due to its extensive use, and it has systematic effects on our ecosystem and human immunity. In this study, long-root Eichhornia crassipes was reclaimed as a multi-functional activated carbon (MFAC) to remove fluoroquinolones (FQs) from contaminated water. To get insight into the adsorption mechanism, multiple measurements, including FTIR and XPS analyses, were employed to investigate the adsorption processes of ciprofloxacin and norfloxacin as well as the experiments of effect of exogenous factors on adsorption performances. The results confirmed that the adsorption of FQs by MFAC was mainly attributed to the electrostatic interaction, hydrogen bond interaction, and electronic-donor-acceptor (EDA) interaction. In addition, the kinetics and thermodynamics experiments demonstrated that the MFAC possessed great adsorption performance for FQs. According to the Langmuir model, the saturated adsorption capacities exceeded 145.0 mg/g and 135.1 mg/g for CIP and NOR at 303.15 K, respectively. The column experiments were conducted to explore the application performance of MFAC on the advanced treatment of synthetic water at different flow rates and bed depths. The adsorption capacity of CIP on MFAC was estimated by the Thomas models and the bed-depth service time (BDST) models, reaching 127.56 mg/g and 11,999.52 mg/L, respectively. These results also provide a valid approach for the resource recycling of the redundant long-root Eichhornia crassipes plants. Graphical abstract.[Abstract] [Full Text] [Related] [New Search]