These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Visual input shapes the auditory frequency responses in the inferior colliculus of mouse. Author: Cheng L, Fei XY, Qu YL. Journal: Hear Res; 2019 Sep 15; 381():107777. PubMed ID: 31430633. Abstract: The integration of visual and auditory information is important for humans or animals to build an accurate and coherent perception of the external world. Although some evidence has shown some principles of the audiovisual integration, little insight has been gained into its functional purpose. In this study, we investigated the functional influence of dynamic visual input on auditory frequency processing by recording single unit activity in the central nucleus of the inferior colliculus (ICc). Results showed that the auditory responses of ICc neurons to sound frequencies could be enhanced or suppressed by visual stimuli even though the same visual stimuli induced no neural responses when presented alone. For each ICc neuron, the most effective visual stimuli were located in the same azimuth as for auditory stimuli and preceded for ∼20 ms. Additionally, visual stimuli could steepen or flatten the frequency tuning curves (FTCs) of ICc neurons by various visual effects at each responsive frequency. The modulation degree of auditory FTCs was dependent on the minimal thresholds (MTs) of ICc neurons, i.e., with MTs increasing, the modulation degree decreased. Due to the non-homogeneous distribution of MTs which was lowest at 10 kHz, visual modulation of auditory FTCs exhibited a frequency-specific manner, the closer it reached the characteristic frequency (CF) of 10 kHz, the greater modulation. Thus, visual modulation of auditory frequency responses in ICc is dependent not only on the visual stimulus but also on the auditory characteristics of ICc neurons. These results suggest a moment-to-moment visual modulation of auditory frequency responses that in real time increase auditory frequency sensitivity to audiovisual stimuli. Furthermore, in the long term such modulation could serve to instruct auditory adaptive plasticity to maintain necessary and accurate auditory detection and perceptual behavior.[Abstract] [Full Text] [Related] [New Search]