These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of a validated direct injection-liquid chromatographic tandem mass spectrometric method under negative electrospray ionization for quantitation of nine microcystins and nodularin-R in lake water.
    Author: Zhang H, Gonzales GB, Beloglazova NV, De Saeger S, Shen J, Zhang S, Yang S, Wang Z.
    Journal: J Chromatogr A; 2020 Jan 04; 1609():460432. PubMed ID: 31431355.
    Abstract:
    Microcystins (MCs) are cyclic heptapeptide toxins produced by various cyanobacterial genera that are toxic to both animals and humans. In this study, a novel strategy was proposed for the quantitation of nine MCs and Nodularin-R (NOD) in lake water using UHPLC-MS/MS under negative ionization mode, in which only centrifugation was employed during sample preparation. As a result, limits of quantification (LOQ) ranging from 0.05 to 0.1 μg/L for all studied compounds were obtained in water samples, which were lower than the results obtained using positive ionization mode. Additionally, validation was performed by spiking three different levels of MCs at 0.05 or 0.1, 0.5, 1.0 μg/L (n = 6). Recoveries ranged from 88.6% to 101.8%, and intraday and interday variability were lower than 12% and 14%, respectively, for all targeted compounds. Furthermore, the proposed method was applied to investigate microcystins contamination in fifty lake water samples collected in different regions in China. As a result, MC-LR, MC-RR, MC-YR, MC-WR, MC-LW, MC-LA, MC-LY, and MC-HilR were detected in lake water samples at trace level ranging from 0.06 to 0.37 μg/L. The obtained results indicated that it was necessary to monitor the presence of MCs in lake water, especially during regular cyanobacterial blooms during warmer months.
    [Abstract] [Full Text] [Related] [New Search]