These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylation-Mediated Dynamics of Nitrate Transceptor NRT1.1 Regulate Auxin Flux and Nitrate Signaling in Lateral Root Growth.
    Author: Zhang X, Cui Y, Yu M, Su B, Gong W, Baluška F, Komis G, Šamaj J, Shan X, Lin J.
    Journal: Plant Physiol; 2019 Oct; 181(2):480-498. PubMed ID: 31431511.
    Abstract:
    The dual-affinity nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) has two modes of transport and signaling, governed by Thr-101 (T101) phosphorylation. NRT1.1 regulates lateral root (LR) development by modulating nitrate-dependent basipetal auxin export and nitrate-mediated signal transduction. Here, using the Arabidopsis (Arabidopsis thaliana) NRT1.1T101D phosphomimetic and NRT1.1T101A nonphosphorylatable mutants, we found that the phosphorylation state of NRT1.1 plays a key role in NRT1.1 function during LR development. Single-particle tracking revealed that phosphorylation affected NRT1.1 spatiotemporal dynamics. The phosphomimetic NRT1.1T101D form showed fast lateral mobility and membrane partitioning that facilitated auxin flux under low-nitrate conditions. By contrast, nonphosphorylatable NRT1.1T101A showed low lateral mobility and oligomerized at the plasma membrane (PM), where it induced endocytosis via the clathrin-mediated endocytosis and microdomain-mediated endocytosis pathways under high-nitrate conditions. These behaviors promoted LR development by suppressing NRT1.1-controlled auxin transport on the PM and stimulating Ca2+-ARABIDOPSIS NITRATE REGULATED1 signaling from the endosome.
    [Abstract] [Full Text] [Related] [New Search]