These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Understanding the Mechanism of [4Fe-4S] Cluster Assembly on Eukaryotic Mitochondrial and Cytosolic Aconitase. Author: Wachnowsky C, Hendricks AL, Wesley NA, Ferguson C, Fidai I, Cowan JA. Journal: Inorg Chem; 2019 Oct 21; 58(20):13686-13695. PubMed ID: 31436962. Abstract: Iron-sulfur (Fe-S) clusters are common prosthetic groups that are found within a variety of proteins responsible for functions that include electron transfer, regulation of gene expression, and substrate binding and activation. Acquisition of a [4Fe-4S] cluster is essential for the functionality of many such roles, and dysfunctions in Fe-S cluster synthesis and trafficking often result in human disease, such as multiple mitochondrial dysfunctions syndrome. While the topic of [2Fe-2S] cluster biosynthesis and trafficking has been relatively well studied, the understanding of such processes involving [4Fe-4S] centers is less developed. Herein, we focus on the mechanism of the assembly of [4Fe-4S] clusters on two members of the aconitase family, differing also in organelle placement (mitochondrion and cytosol) and biochemical function. Two mechanistic models are evaluated by a combination of kinetic and spectroscopic models, namely, a consecutive model (I), in which two [2Fe-2S] clusters are sequentially delivered to the target, and a prereaction equilibrium model (II), in which a [4Fe-4S] cluster transiently forms on a donor protein before transfer to the target. The paper also addresses the issue of cluster nuclearity for functionally active forms of ISCU, NFU, and ISCA trafficking proteins, each of which has been postulated to exist in both [2Fe-2S] and [4Fe-4S] bound states. By the application of kinetic assays and electron paramagnetic resonance spectroscopy to examine delivery pathways from a variety of potential [2Fe-2S] donor proteins to eukaryotic forms of both aconitase and iron regulatory protein, we conclude that a consecutive model following the delivery of [2Fe-2S] clusters from NFU1 is the most likely mechanism for these target proteins.[Abstract] [Full Text] [Related] [New Search]