These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity.
    Author: Tang Z, Cheng S, Sun Y, Zhang Y, Xiang X, Ouyang Z, Zhu X, Wang B, Hei M.
    Journal: Exp Neurol; 2019 Nov; 321():113039. PubMed ID: 31442443.
    Abstract:
    Neonatal hypoxic-ischemic brain damage (HIBD) survivors present with long-term neurological disorders affecting their quality of life, and there remains a lack of effective treatment. Toll-like receptor 4 (TLR4) is widely distributed in nerve cells and its inhibition has a neuroprotective effect against brain injury. The present study aimed to evaluate the long-term neuroprotective effects of early inhibition of TLR4 during HIBD. Seven-day-old rat pups were subjected to left carotid artery ligation followed by 2 h of hypoxia (8.0% O2). A single dose of TAK-242 (0.5 mg/kg), a TLR4-specific antagonist, was intraperitoneally injected half an hour prior to hypoxic ischemia (HI). The long-term effects of TAK-242 inhibition on the induced hippocampal injury were investigated by assessing behaviour at P28, and then using a variety of methods to exploring the mechanism, including immunofluorescence, Golgi silver staining, Western blotting and real-time polymerase chain reaction (RT-PCR). TAK-242 treatment significantly reduced the expression levels of TLR4 and its downstream signalling molecules in the ipsilateral lesion of the hippocampus 24 h after HIBD. The Morris water maze (MWM) test demonstrated that TAK-242 treatment reduced the loss of HI-induced learning and memory functions. Immunofluorescence experiments showed that TAK-242 administration attenuated HI-induced loss of neurons, prevented the activation of microglia and astrocytes, and increased the expression of the glutamate receptor subtype, N-methyl d-aspartate 2A (NR2A) in the ipsilateral hippocampus region. Golgi silver staining revealed that TAK-242 prevented an HI-induced decline in spine density in the ipsilateral hippocampus. Western blot and RT-PCR results indicated that the expression of NR2A protein and mRNA in the ipsilateral hippocampi of adolescent rats decreased after neonatal HIBD; early TAK-242 administration may reverse these effects. In conclusion, our findings indicate that early inhibition of TLR4 signalling may improve the long-term prognosis of neonatal HIBD. The mechanisms contributing to this improvement involve reductions in neuronal loss, a decrease in glial cell activation, and an improvement in synaptic plasticity.
    [Abstract] [Full Text] [Related] [New Search]