These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrodynamics of up-flow hybrid anaerobic digestion reactors with built-in bioelectrochemical system. Author: Cui MH, Sangeetha T, Gao L, Wang AJ. Journal: J Hazard Mater; 2020 Jan 15; 382():121046. PubMed ID: 31450205. Abstract: Understanding the electrode configuration is vital for the successful application of bioelectrochemical system (BES) in recalcitrant wastewater treatment. Especially in those traditional anaerobic processes that integrate with BES to construct effective hybrid bioreactors. Hybrid bioreactors employed granular graphite as electrode material achieved 86.62 ± 1.83% decolorization efficiency of azo dye acid orange 7 (AO7) at influent AO7 loading rate of 800 g/(m3∙d) and it was about 6% higher than that with carbon fiber brush electrodes. Such electrodes were positioned above the anaerobic sludge layer and higher efficiency (8%) than the reactors with electrodes placed beneath the sludge layer was observed. Tracer experiments and modeling of residence time distribution indicated that the fluid pattern in hybrid bioreactors was modified to plug flow pattern and had a better consummate mixing ability compared to the conventional anaerobic reactor. Simulation using computational fluid dynamics technique showcased favorable mass transfer near electrode modules. The hydrodynamics of simulation and experimental results were connected by simplifying electrode module as a porous media model. This study thus proved that hybrid bioreactors can effectively enhance wastewater treatment comprehensively through the analysis of decolorization performance and hydrodynamics.[Abstract] [Full Text] [Related] [New Search]