These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DprA-Dependent Exit from the Competent State Regulates Multifaceted Streptococcus pneumoniae Virulence. Author: Lin J, Lau GW. Journal: Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31451619. Abstract: Streptococcus pneumoniae (pneumococcus) causes multiple infectious diseases. The pneumococcal competence system facilitates genetic transformation, spreads antibiotic resistance, and contributes to virulence. DNA-processing protein A (DprA) regulates the exit of pneumococcus from the competent state. Previously, we have shown that DprA is important in both bacteremia and pneumonia infections. Here, we examined the mechanisms of virulence attenuation in a ΔdprA mutant. Compared to the parental wild-type D39, the ΔdprA mutant enters the competent state when exposed to lower concentrations of the competence-stimulating peptide CSP1. The ΔdprA mutant overexpresses ComM, which delays cell separation after division. Additionally, the ΔdprA mutant overexpresses allolytic factors LytA, CbpD, and CibAB and is more susceptible to detergent-triggered lysis. Disabling of the competent-state-specific induction of ComM and allolytic factors compensated for the virulence loss in the ΔdprA mutant, suggesting that overexpression of these factors contributes to virulence attenuation. Finally, the ΔdprA mutant fails to downregulate the expression of multiple competence-regulated genes, leading to the excessive energy consumption. Collectively, these results indicate that an inability to properly exit the competent state disrupts multiple cellular processes that cause virulence attenuation in the ΔdprA mutant.[Abstract] [Full Text] [Related] [New Search]