These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RON2, a novel gene in Babesia bigemina, contains conserved, immunodominant B-cell epitopes that induce antibodies that block merozoite invasion.
    Author: Mosqueda J, Hidalgo-Ruiz M, Calvo-Olvera DA, Hernandez-Silva DJ, Ueti MW, Mercado-Uriostegui MA, Rodriguez A, Ramos-Aragon JA, Hernandez-Ortiz R, Kawazu SI, Igarashi I.
    Journal: Parasitology; 2019 Nov; 146(13):1646-1654. PubMed ID: 31452491.
    Abstract:
    Bovine babesiosis is the most important protozoan disease transmitted by ticks. In Plasmodium falciparum, another Apicomplexa protozoan, the interaction of rhoptry neck protein 2 (RON2) with apical membrane antigen-1 (AMA-1) has been described to have a key role in the invasion process. To date, RON2 has not been described in Babesia bigemina, the causal agent of bovine babesiosis in the Americas. In this work, we found a ron2 gene in the B. bigemina genome. RON2 encodes a protein that is 1351 amino acids long, has an identity of 64% (98% coverage) with RON2 of B. bovis and contains the CLAG domain, a conserved domain in Apicomplexa. B. bigemina ron2 is a single copy gene and it is transcribed and expressed in blood stages as determined by RT-PCR, Western blot, and confocal microscopy. Serum samples from B. bigemina-infected bovines were screened for the presence of RON2-specific antibodies, showing the recognition of conserved B-cell epitopes. Importantly, in vitro neutralization assays showed an inhibitory effect of RON2-specific antibodies on the red blood cell invasion by B. bigemina. Therefore, RON2 is a novel antigen in B. bigemina and contains conserved B-cell epitopes, which induce antibodies that inhibit merozoite invasion.
    [Abstract] [Full Text] [Related] [New Search]