These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Specific antagonism of behavioral action of "uncommon" amino acids linked to motor-system diseases. Author: Ross SM, Spencer PS. Journal: Synapse; 1987; 1(3):248-53. PubMed ID: 3145580. Abstract: Beta-N-methylamino-L-alanine (BMAA) and beta-N-oxalylamino-L-alanine (BOAA) are chemically related amino acids present in the seeds of Cycas circinalis and Lathyrus sativus, respectively. Consumption of these seeds has been linked to Guam amyotrophic lateral sclerosis (BMAA) and lathyrism (BOAA; a form of primary lateral sclerosis). A single large dose of BOAA or BMAA causes seizures in newborn mice and postsynaptic neuronal edema and degeneration in CNS explants. We report that the acute neurotoxic actions of these amino acids are blocked selectively by specific glutamate-receptor antagonists (administered intracerebroventricularly) (i.c.v.) prior to the amino acid. Administration of BOAA i.c.v. to neonatal mice (ED100 = 50 micrograms) elicits a spectrum of time-dependent behavioral states including arm and leg rigidity, convulsions, and resting tremor. These are blocked in a dose-dependent manner by cis-2,3-piperidine dicarboxylic acid (PDA), an antagonist of quisqualate (QA)-preferring (A2) and kainate (KA)-preferring (A3) glutamate receptors (ED50s; 2.8 micrograms, rigidity; 1.4 micrograms, convulsions; 2.4 micrograms, resting tremor). BMAA induces a transitory hyperexcitable state followed by a long-lasting whole-body shake/wobble (ED100 = 1,000 micrograms, i.c.v.). These responses are antagonized selectively and dose-dependently by 2-amino-7-phosphonoheptanoic acid (AP7), an N-methyl-D-aspartate (NMDA) or A1 glutamate-receptor antagonist (ED50 = 0.45 microgram). Taken collectively, our data indicate that the acute neuronotoxic actions of BOAA and BMAA (or a metabolite) operate through different glutamate-receptor species. BMAA likely exerts most of its action indirectly via the A1 glutamate receptor, while BOAA acts principally at the A2 and/or A3 receptor.[Abstract] [Full Text] [Related] [New Search]