These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visible-Light-Driven Photocatalytic Activity of SnO2-ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production.
    Author: Vattikuti SVP, Reddy PAK, Shim J, Byon C.
    Journal: ACS Omega; 2018 Jul 31; 3(7):7587-7602. PubMed ID: 31458911.
    Abstract:
    A zero-dimensional/two-dimensional heterostructure consists of binary SnO2-ZnO quantum dots (QDs) deposited on the surface of graphitic carbon nitride (g-C3N4) nanosheets. The so-called SnO2-ZnO QDs/g-C3N4 hybrid was successfully synthesized via an in situ co-pyrolysis approach to achieve efficient photoactivity for the degradation of pollutants and production of hydrogen (H2) under visible-light irradiation. High-resolution transmission electron microscopy images show the close contacts between SnO2-ZnO QDs with the g-C3N4 in the ternary SnO2-ZnO QDs/g-C3N4 hybrid. The optimized hybrid shows excellent photocatalytic efficiency, achieving 99% rhodamine B dye degradation in 60 min under visible-light irradiation. The enriched charge-carrier separation and transportation in the SnO2-ZnO QDs/g-C3N4 hybrid was determined based on electrochemical impedance and photocurrent analyses. This remarkable photoactivity is ascribed to the "smart" heterostructure, which yields numerous benefits, such as visible-light-driven fast electron and hole transfer, due to the strong interaction between the SnO2-ZnO QDs with the g-C3N4 matrix. In addition, the SnO2-ZnO QDs/g-C3N4 hybrid demonstrated a high rate of hydrogen production (13 673.61 μmol g-1), which is 1.06 and 2.27 times higher than that of the binary ZnO/g-C3N4 hybrid (12 785.54 μmol g-1) and pristine g-C3N4 photocatalyst (6017.72 μmol g-1). The synergistic effect of increased visible absorption and diminished recombination results in enhanced performance of the as-synthesized tin oxide- and zinc oxide-modified g-C3N4. We conclude that the present ternary SnO2-ZnO QDs/g-C3N4 hybrid is a promising electrode material for H2 production and photoelectrochemical cells.
    [Abstract] [Full Text] [Related] [New Search]