These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unique ultrastructural characteristics of the tegument of the digenean blood fluke Aporocotyle simplex Odhner, 1900 (Digenea: Aporocotylidae), a parasite of flatfishes.
    Author: Poddubnaya LG, Hemmingsen W, Poddubny SA, Gibson DI.
    Journal: Parasitol Res; 2019 Oct; 118(10):2801-2810. PubMed ID: 31468127.
    Abstract:
    This paper includes the first transmission electron microscopical (TEM) study of the tegument of a member of the basal digenean family Aporocotylidae. Scanning electron microscopical investigations of the fish blood fluke Aporocotyle simplex show that each boss on the lateral body surface bears 12-15 simple, uniform spines which extend from 0.5-2.7 μm above the surface of the boss. TEM observations revealed that these spines reach deep beneath the distal cytoplasm of the tegument for much of their length (9-12 μm) and are surrounded by a complex of diagonal muscles in each boss. This is the first record of any digenean with so-called 'sunken' spines. The results suggest that aporocotylid spines arise from within the sarcoplasm of the boss diagonal muscles. The sunken cell bodies (perikarya) of the tegument are connected to the distal cytoplasm via ducts (specialised processes lined by microtubules); this in contrast to other digeneans studied, where they are connected via non-specialised cytoplasmic processes. Within the distal cytoplasm, the tegumental ducts of A. simplex are surrounded by invaginations of the basal membrane and release their cytoplasmic inclusions into the distal cytoplasm. These apparently unique morphological features of the tegument, especially the deep origin of the spines, may represent useful characteristics for understanding aporocotylid relationships, especially in view of the known variation in the spine patterns of aporocotylids.
    [Abstract] [Full Text] [Related] [New Search]