These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adipose tissue-derived stromal cells' conditioned medium modulates endothelial-mesenchymal transition induced by IL-1β/TGF-β2 but does not restore endothelial function. Author: Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Journal: Cell Prolif; 2019 Nov; 52(6):e12629. PubMed ID: 31468648. Abstract: OBJECTIVES: Endothelial cells undergo TGF-β-driven endothelial-mesenchymal transition (EndMT), representing up to 25% of cardiac myofibroblasts in ischaemic hearts. Previous research showed that conditioned medium of adipose tissue-derived stromal cells (ASC-CMed) blocks the activation of fibroblasts into fibrotic myofibroblasts. We tested the hypothesis that ASC-CMed abrogates EndMT and prevents the formation of adverse myofibroblasts. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVEC) were treated with IL-1β and TGF-β2 to induce EndMT, and the influence of ASC-CMed was assessed. As controls, non-treated HUVEC or HUVEC treated only with IL-1β in the absence or presence of ASC-CMed were used. Gene expression of inflammatory, endothelial, mesenchymal and extracellular matrix markers, transcription factors and cell receptors was analysed by RT-qPCR. The protein expression of endothelial and mesenchymal markers was evaluated by immunofluorescence microscopy and immunoblotting. Endothelial cell function was measured by sprouting assay. RESULTS: IL-1β/TGF-β2 treatment induced EndMT, as evidenced by the change in HUVEC morphology and an increase in mesenchymal markers. ASC-CMed blocked the EndMT-related fibrotic processes, as observed by reduced expression of mesenchymal markers TAGLN (P = 0.0008) and CNN1 (P = 0.0573), as well as SM22α (P = 0.0501). The angiogenesis potential was impaired in HUVEC undergoing EndMT and could not be restored by ASC-CMed. CONCLUSIONS: We demonstrated that ASC-CMed reduces IL-1β/TGF-β2-induced EndMT as observed by the loss of mesenchymal markers. The present study supports the anti-fibrotic effects of ASC-CMed through the modulation of the EndMT process.[Abstract] [Full Text] [Related] [New Search]