These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient adsorption of Mn(II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study.
    Author: Huang M, Zhang Y, Xiang W, Zhou T, Wu X, Mao J.
    Journal: J Environ Sci (China); 2019 Nov; 85():56-65. PubMed ID: 31471031.
    Abstract:
    In this study, greatly enhanced Mn(II) adsorption was achieved by as-synthesized diethylenetriaminepentaacetate acid intercalated Mg/Al layered double hydroxides (LDHs-DTPA). The adsorption capacity of LDHs-DTPA was 83.5 mg/g, which is much higher than that of LDHs-EDTA (44.4 mg/g), LDHs-Oxalate (21.6 mg/g) and LDHs (28.8 mg/g). The adsorption data of aqueous Mn(II) using LDHs-DTPA could be well described by the pseudo-second order kinetics and Langmuir isotherm model. Thermodynamics study results also showed that the adsorption process of Mn(II) by LDHs-DTPA was exothermic as indicated by the negative ΔH value. Furthermore, based on the structural, morphological and thermostable features, as well as FT-IR and XPS characterizations of LDHs-DTPA and the pristine LDHs, the adsorption mechanism of Mn(II) was proposed. The carboxyl groups of DTPA were proposed to be the main binding sites for Mn(II), and the hydroxyl groups of LDHs also played a minor role in the adsorption process. Among the three common regeneration reagents, 0.1 mol/L Na2CO3 was the best for reusing LDHs-DTPA in Mn(II) adsorption. Besides, the Mn(II) adsorption performance could be hindered in the presence of typical inorganic ions, especially cations. Further specific modifications of LDHs-DTPA are suggested to get more selective adsorption of Mn(II) in practical applications.
    [Abstract] [Full Text] [Related] [New Search]