These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience.
    Author: Richter DC, Frey O, Röhr A, Roberts JA, Köberer A, Fuchs T, Papadimas N, Heinzel-Gutenbrunner M, Brenner T, Lichtenstern C, Weigand MA, Brinkmann A.
    Journal: Infection; 2019 Dec; 47(6):1001-1011. PubMed ID: 31473974.
    Abstract:
    PURPOSE: Standard dosing and intermittent bolus application (IB) are important risk factors for pharmacokinetic (PK) target non-attainment during empirical treatment with β-lactams in critically ill patients, particularly in those with sepsis and septic shock. We assessed the effect of therapeutic drug monitoring-guided (TDM), continuous infusion (CI) and individual dosing of piperacillin/tazobactam (PIP) on PK-target attainment in critically ill patients. METHODS: This is a retrospective, single-center analysis of a database including 484 patients [933 serum concentrations (SC)] with severe infections, sepsis and septic shock who received TDM-guided CI of PIP in the intensive care unit (ICU) of an academic teaching hospital. The PK-target was defined as a PIP SC between 33 and 64 mg/L [fT > 2-4 times the epidemiological cutoff value (ECOFF) of Pseudomonas aeruginosa (PSA)]. RESULTS: PK-target attainment with standard dosing (initial dose) was observed in 166 patients (34.3%), whereas only 49 patients (10.1%) demonstrated target non-attainment. The minimum PK-target of ≥ 33 mg/L was overall realized in 89.9% (n = 435/484) of patients after the first PIP dose including 146 patients (30.2%) with potentially harmful SCs ≥ 100 mg/L. Subsequent TDM-guided dose adjustments significantly enhanced PK-target attainment to 280 patients (62.4%) and significantly reduced the fraction of potentially overdosed (≥ 100 mg/L) patients to 4.5% (n = 20/449). Renal replacement therapy (RRT) resulted in a relevant reduction of PIP clearance (CLPIP): no RRT CLPIP 6.8/6.3 L/h (median/IQR) [SCs n = 752, patients n = 405], continuous veno-venous hemodialysis (CVVHD) CLPIP 4.3/2.6 L/h [SCs n = 160, n = 71 patients], intermittent hemodialysis (iHD) CLPIP 2.6/2.3 L/h [SCs n = 21, n = 8 patients]). A body mass index (BMI) of > 40 kg/m2 significantly increased CLPIP 9.6/7.7 L/h [SC n = 43, n = 18 patients] in these patients. Age was significantly associated with supratherapeutic PIP concentrations (p < 0.0005), whereas high CrCL led to non-target attainment (p < 0.0005). Patients with target attainment (33-64 mg/L) within the first 24 h exhibited the lowest hospital mortality rates (13.9% [n = 23/166], p < 0.005). Those with target non-attainment demonstrated higher mortality rates (≤ 32 mg/L; 20.8% [n = 10/49] ≥ 64 mg/L; 29.4% [n = 79/269]). CONCLUSION: TDM-guided CI of PIP is safe in critically ill patients and improves PK-target attainment. Exposure to defined PK-targets impacts patient mortality while lower and higher than intended SCs may influence the outcome of critically ill patients. Renal function and renal replacement therapy are main determinants of PK-target attainment. These results are only valid for CI of PIP and not for prolonged or intermittent bolus administration of PIP.
    [Abstract] [Full Text] [Related] [New Search]