These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibiting MicroRNA-29a Protects Myocardial Ischemia-Reperfusion Injury by Targeting SIRT1 and Suppressing Oxidative Stress and NLRP3-Mediated Pyroptosis Pathway.
    Author: Ding S, Liu D, Wang L, Wang G, Zhu Y.
    Journal: J Pharmacol Exp Ther; 2020 Jan; 372(1):128-135. PubMed ID: 31481517.
    Abstract:
    To investigate the effects of microRNA-29a (miR-29a) on myocardial ischemia-reperfusion (I/R) injury and its specific mechanisms, we used H9C2 myocardial cells to establish a myocardial ischemia model by hypoxia/reoxygenation (H/R), and microRNA-29a inhibitor was interfered. Annexin V/propidium iodide and flow cytometry were used to detect the effects of cell death. C57 mice were used to establish were used to establish the I/R injury model, and H&E staining was used to detect pathologic damage to heart tissues. The expressions of miR-29a silent information regulator factor 2-related enzyme 1 (SIRT1) and nucleotide-binding oligomerization domain like receptor protein 3 (NLRP3), as well as pyroptosis-related proteins were determined by quantitative reverse-transcription polymerase chain reaction and Western blot analysis. The serum levels of 2-hydroxybutyrate dehydrogenase (HBDH), lactate dehydrogenase-1 (LDH), creatine kinase (CK), creatine kinase MB activity (CK-MB), IMA, and inflammatory factors in I/R rats were significantly up-regulated. In the I/R group, the expression of miR-29a was significantly up-regulated while SIRT1 was remarkably down-regulated. Dual luciferase reporter assay showed SIRT1 was a direct target of miR-29a. Inhibition of miR-29a significantly up-regulated the expression of peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor-2 and endothelial nitric oxide synthase while remarkably down-regulating levels of inducible nitric oxide synthase and malondialdehyde in I/R. The oxidative stress that was induced by I/R injury was also suppressed by inhibition of miR-29a. All these effects of miR-29a inhibition were reversed by small interfering SIRT1. The in vitro H/R results showed that NLRP3-caspase-1-mediated pyroptosis was activated in H/R but was significantly inhibited by the inhibition of miR-29a. Inhibition of miR-29a improved myocardial I/R injury by targeting SIRT1 through suppressing oxidative stress and NLRP3-mediated pyroptosis. SIGNIFICANCE STATEMENT: In this study, we showed for the first time that miR-29a could improve myocardial I/R injury through inhibition of pyroptosis.
    [Abstract] [Full Text] [Related] [New Search]