These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield. Author: Zhang XJ, Zheng L, Wu D, Zhou R, Liu ZQ, Zheng YG. Journal: Biotechnol Prog; 2020 Jan; 36(1):e2900. PubMed ID: 31486281. Abstract: tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space-time yield was 1,182.3 g L-1 day-1 , which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.[Abstract] [Full Text] [Related] [New Search]