These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Author: Hankaniemi MM, Stone VM, Andrejeff T, Heinimäki S, Sioofy-Khojine AB, Marjomäki V, Hyöty H, Blazevic V, Flodström-Tullberg M, Hytönen VP, Laitinen OH. Journal: Antiviral Res; 2019 Nov; 171():104595. PubMed ID: 31491431. Abstract: Type B Coxsackieviruses (CVBs) are a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. We have previously produced virus-like particles (VLPs) for CVB3 with a baculovirus-insect cell production system. Here we have explored the potential of a VLP-based vaccine targeting CVB1 and describe the production of CVB1-VLPs with a scalable VLP purification method. The developed purification method consisting of tangential flow filtration and ion exchange chromatography is compatible with industrial scale production. CVB1-VLP vaccine was treated with UV-C or formalin to study whether stability and immunogenicity was affected. Untreated, UV treated and formalin treated VLPs remained morphologically intact for 12 months at 4 °C. Formalin treatment increased, whereas UV treatment decreased the thermostability of the VLP-vaccine. High neutralising and total IgG antibody levels, the latter predominantly of a Th2 type (IgG1) phenotype, were detected in female BALB/c mice immunised with non-adjuvanted, untreated CVB1-VLP vaccine. The immunogenicity of the differently treated CVB1-VLPs (non-adjuvanted) were compared in C57BL/6 J mice and animals vaccinated with formalin treated CVB1-VLPs mounted the strongest neutralising and, CVB1-specific IgG and IgG1 antibody responses. This study demonstrates that formalin treatment increases the stability and immunogenicity of CVB1-VLP vaccine and may offer a universal tool for the stabilisation of VLPs in the production of more efficient vaccines.[Abstract] [Full Text] [Related] [New Search]