These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association between ambient air pollution exposure and infants small for gestational age in Huangshi, China: a cross-sectional study.
    Author: Hao J, Zhang F, Chen D, Liu Y, Liao L, Shen C, Liu T, Liao J, Ma L.
    Journal: Environ Sci Pollut Res Int; 2019 Nov; 26(31):32029-32039. PubMed ID: 31493084.
    Abstract:
    Small for gestational age (SGA) is defined as intrauterine growth retardation or small sample, referring to the 10th percentile of birth weight lower or two standard deviations less than the average weight at the same gestational age. SGA infants bring great economic and psychological burdens to families and society. The association between exposure to air pollution and SGA in underdeveloped cities with poor air quality remains unclear. Thus, this study is conducted to estimate the effects of maternal exposure to air pollutants on SGA numbers. Birth information was collected from the Huangshi Maternity and Children's Health Hospital from January 1st to December 31st in 2017. Data of pregnancy exposure were accessed using stationary monitors. These data included particulate matter less than or equal to 10 μm in aerodynamic diameter (PM10), particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Multivariate logistic regression models were performed to estimate the association between ambient air pollution and the risk of SGA during different exposure windows. It was found that a 1 μg/m3 increase in air pollution concentrations during the entire pregnancy was associated with a higher risk of SGA, with an adjusted odds ratio (OR) and 95% confidence interval (CI) of 1.055 (1.035-1.076), 1.084 (1.053-1.116), 1.000 (0.953-1.049), and 1.051 (0.968-1.141) for PM10, PM2.5, NO2, and SO2, respectively. Thus, it is suggested that exposure to air pollution is associated with an increased risk of SGA. The effects of PM10 and PM2.5 were more stable than NO2 and SO2.
    [Abstract] [Full Text] [Related] [New Search]