These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surface modification of fluorescent Tb3+-doped layered double hydroxides with hyperbranched polymers through host-guest interaction.
    Author: Deng F, Zhou H, Chen J, Huang H, Tian J, Huang Q, Wen Y, Liu M, Zhang X, Wei Y.
    Journal: Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109976. PubMed ID: 31499989.
    Abstract:
    The preparation of fluorescent inorganic-organic polymer composites for biomedical applications has become one of the most interest research focuses recently. In this work, we reported a novel method for the preparation of Tb3+-doped luminescent layered double hydroxides (LDHs) based composites by taken advantage of a one-pot supramolecular chemistry. The adamantane can be immobilized on the surface of Tb3+-doped LDHs to obtain LDH-Ad, which could be further utilized for modified by the β-cyclodextrin (β-CD) containing hyperbranched polyglycerols (β-CD-HPG) through the host-guest interaction. Based on the characterization results, we demonstrated that the hyperbranched polyglycerol could be facilely introduced on these fluorescent Tb3+-doped LDHs through the method described in this work. The obtained Tb3+-doped LDHs based polymer composites (LDHs-β-CD-HPG) display improved water dispersibility and still maintain their fluorescence. The results based on various biological assays suggest that LDHs-β-CD-HPG polymer composites are of low cytotoxicity and their cell uptake behavior can be effectively traced using confocal laser imaging. All of the above results demonstrated that the fluorescent Tb3+-doped LDHs based polymer composites could be effectively surface modified with hydrophilic hyperbranched polymers through a one-pot facile host-guest interaction and the resultant fluorescent composites are of excellent physicochemical properties and display great potential for biomedical applications. This novel surface modification method should also be important for fabrication of other multifunctional composites and therefore great advanced the development of biomedical applications of fluorescent LDHs based polymer composites and related materials.
    [Abstract] [Full Text] [Related] [New Search]