These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of lipoxygenase inhibitor and peptidoleukotriene antagonist on myocardial injury in a canine coronary occlusion-reperfusion model.
    Author: Toki Y, Hieda N, Torii T, Hashimoto H, Ito T, Ogawa K, Satake T.
    Journal: Prostaglandins; 1988 Apr; 35(4):555-71. PubMed ID: 3150113.
    Abstract:
    UNLABELLED: We studied effects of lipoxygenase inhibitor (AA-861) and peptidoleukotriene antagonist (ONO-1078) on infarct size, polymorphonuclear leukocyte (PMNs) infiltration, gross myocardial hemorrhage and ventricular arrhythmias in canine coronary occlusion (2 hr)-reperfusion (5 hr) model. Infarct size (IS) and risk area (RA) were determined by dual staining technique. Thirty minutes before coronary occlusion dogs were randomly assigned to one of the following three groups: lipoxygenase inhibitor group (n = 11) receiving AA-861 3 mg/kg i.v., peptidoleukotriene antagonist group (n = 11) receiving continuous intravenous infusion of ONO-1078 1 micrograms/kg/min and vehicle control group (n = 15). Both AA-861 and ONO-1078 reduced infarct size [AA-861: 21.8 +/- 1.3% of RA (mean +/- SEM), ONO-1078: 22.5 +/- 4.4% vs CONTROL: 54.0 +/- 6.4%, p less than 0.01 and p less than 0.01, respectively] and area of gross myocardial hemorrhage (AA-861: 5.1 +/- 2.4% of IS, ONO-1078: 5.2 +/- 2.5% vs CONTROL: 22.3 +/- 3.9%, p less than 0.01 and p less than 0.01, respectively). Both drugs also decreased frequency of ventricular premature contractions both during occlusion and during reperfusion, and that of ventricular tachycardia during reperfusion. AA-861 inhibited PMNs recruitment into infarcted area. However, ONO-1078 had no significant influence on degree of PMNs infiltration. These results suggest that lipoxygenase products, especially peptidoleukotrienes (LTC4, D4 and E4) may play important roles in the pathogenesis of myocardial ischemic and reperfusion injuries.
    [Abstract] [Full Text] [Related] [New Search]