These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ambient air pollution and in vitro fertilization treatment outcomes. Author: Boulet SL, Zhou Y, Shriber J, Kissin DM, Strosnider H, Shin M. Journal: Hum Reprod; 2019 Oct 02; 34(10):2036-2043. PubMed ID: 31504508. Abstract: STUDY QUESTION: Is air pollution associated with IVF treatment outcomes in the USA? SUMMARY ANSWER: We did not find clear evidence of a meaningful association between reproductive outcomes and average daily concentrations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) and ozone (O3). WHAT IS KNOWN ALREADY: Maternal exposure to air pollution such as PM2.5, nitrogen oxides, carbon monoxide or O3 may increase risks for adverse perinatal outcomes. Findings from the few studies using data from IVF populations to investigate associations between specific pollutants and treatment outcomes are inconclusive. STUDY DESIGN, SIZE AND DURATION: Retrospective cohort study of 253 528 non-cancelled fresh, autologous IVF cycles including 230 243 fresh, autologous IVF cycles with a transfer of ≥1 embryo was performed between 2010 and 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS: We linked 2010-2012 National ART Surveillance System data for fresh, autologous IVF cycles with the ambient air pollution data generated using a Bayesian fusion model available through the Centers for Disease Control and Prevention's Environmental Public Health Tracking Network. We calculated county-level average daily PM2.5 and O3 concentrations for three time periods: cycle start to oocyte retrieval (T1), oocyte retrieval to embryo transfer (T2) and embryo transfer +14 days (T3). Multivariable predicted marginal proportions from logistic and log-linear regression models were used to estimate adjusted risk ratios (aRR) and 95% CI for the association between reproductive outcomes (implantation rate, pregnancy and live birth) and interquartile increases in PM2.5 and O3. The multipollutant models were also adjusted for patients and treatment characteristics and accounted for clustering by clinic and county of residence. MAIN RESULTS AND THE ROLE OF CHANCE: For all exposure periods, O3 was weakly positively associated with implantation (aRR 1.01, 95% CI 1.001-1.02 for T1; aRR 1.01, 95% CI 1.001-1.02 for T2 and aRR 1.01, 95% CI 1.001-1.02 for T3) and live birth (aRR 1.01, 95% CI 1.002-1.02 for T1; aRR 1.01, 95% CI 1.004-1.02 for T2 and aRR 1.02, 95% CI 1.004-1.03 for T3). PM2.5 was not associated with any of the reproductive outcomes assessed. LIMITATIONS, REASONS FOR CAUTION: The main limitation of this study is the use of aggregated air pollution data as proxies for individual exposure. The weak positive associations found in this study might be related to confounding by factors that we were unable to assess and may not reflect clinically meaningful differences. WIDER IMPLICATIONS OF THE FINDINGS: More research is needed to assess the impact of air pollution on reproductive function. STUDY FUNDING/COMPETING INTEREST(S): None.[Abstract] [Full Text] [Related] [New Search]