These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Author: Chavan SG, Duursma RA, Tausz M, Ghannoum O. Journal: J Exp Bot; 2019 Nov 18; 70(21):6447-6459. PubMed ID: 31504692. Abstract: Hot days are becoming hotter and more frequent, threatening wheat yields worldwide. Developing wheat varieties ready for future climates calls for improved understanding of how elevated CO2 (eCO2) and heat stress (HS) interactively impact wheat yields. We grew a modern, high-yielding wheat cultivar (Scout) at ambient CO2 (aCO2, 419 μl l -1) or eCO2 (654 μl l-1) in a glasshouse maintained at 22/15 °C (day/night). Half of the plants were exposed to HS (40/24 °C) for 5 d at anthesis. In non-HS plants, eCO2 enhanced (+36%) CO2 assimilation rates (Asat) measured at growth CO2 despite down-regulation of photosynthetic capacity. HS reduced Asat (-42%) in aCO2- but not in eCO2-grown plants because eCO2 protected photosynthesis by increasing ribulose bisphosphate regeneration capacity and reducing photochemical damage under HS. eCO2 stimulated biomass (+35%) of all plants and grain yield (+30%) of non-HS plants only. Plant biomass initially decreased following HS but recovered at maturity due to late tillering. HS equally reduced grain yield (-40%) in aCO2- and eCO2-grown plants due to grain abortion and reduced grain filling. While eCO2 mitigated the negative impacts of HS at anthesis on wheat photosynthesis and biomass, grain yield was reduced by HS in both CO2 treatments.[Abstract] [Full Text] [Related] [New Search]