These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. Author: Calvo-Polanco M, Armada E, Zamarreño AM, García-Mina JM, Aroca R. Journal: J Exp Bot; 2019 Nov 18; 70(21):6437-6446. PubMed ID: 31504720. Abstract: The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa × deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants.[Abstract] [Full Text] [Related] [New Search]