These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding of enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene to polynucleotides.
    Author: Chen FM.
    Journal: J Biomol Struct Dyn; 1986 Dec; 4(3):401-18. PubMed ID: 3152155.
    Abstract:
    DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G.C and A.T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT).poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC).poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A.T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.
    [Abstract] [Full Text] [Related] [New Search]