These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. Author: Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Journal: ACS Nano; 2019 Oct 22; 13(10):11283-11293. PubMed ID: 31525947. Abstract: Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.[Abstract] [Full Text] [Related] [New Search]