These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Short-interval intracortical inhibition of the biceps brachii in chronic-resistance versus non-resistance-trained individuals.
    Author: Lahouti B, Lockyer EJ, Wiseman S, Power KE, Button DC.
    Journal: Exp Brain Res; 2019 Nov; 237(11):3023-3032. PubMed ID: 31529168.
    Abstract:
    The purpose of this study was to investigate the effects of chronic resistance training on corticospinal excitability and short intracortical inhibition of the biceps brachii. Eight chronic resistance-trained (RT) and eight non-RT participants completed one experimental session including a total of 30 brief (7 s) elbow flexors isometric contractions at various force outputs [15, 25 and 40% of maximum voluntary contraction (MVC)]. Before the contractions, MVC, maximal compound muscle action potential (Mmax) during 5% MVC and active motor threshold (AMT) at the three various force outputs were recorded. MVC force of the chronic-RT group was 24% higher than the non-RT group (p ≤ 0.001; ω2 = 0.72). The chronic-RT group had lower AMTs at targeted forces of 15 and 25% MVC (p = 0.022 and p = 0.012, respectively) compared to the non-RT group. During 25 and 40% of MVC, the non-RT group exhibited decreased SICI in comparison to the chronic-RT group (p = 0.008; ω2 = 0.35 and p = 0.03; ω2 = 0.21, respectively). However, SICI did not differ between groups at 15% MVC (p = 0.62). In conclusion, chronic resistance training significantly reduces SICI. This suggests the presence of an adaptive process of inhibitory and facilitatory network activation, which may cancel out the SICI, allowing for increased corticomotor drive to the exercised muscle following a long period of resistance training.
    [Abstract] [Full Text] [Related] [New Search]