These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gray matter nuclei damage in acute carbon monoxide intoxication assessed in vivo using diffusion tensor MR imaging. Author: Jiang W, Wu Q, Zhou C, Zhao Z, Tan Y. Journal: Radiol Med; 2020 Jan; 125(1):80-86. PubMed ID: 31529401. Abstract: OBJECTIVE: To observe the structural changes of gray matter nuclei in patients with acute carbon monoxide intoxication by diffusion tensor imaging (DTI), quantify the degree of deep gray matter damage in the brain by adopting imaging technology and research the characteristics of the damage and its pertinence with memory and cognitive impairment. METHODS: Twenty-five patients with acute carbon monoxide intoxication and 25 healthy volunteers matched in sex and age were examined by routine head MRI and diffusion tensor imaging (DTI). Bilateral hippocampus, dater nucleus, thalamus, amygdala, globus pallidus and putamen were taken as regions of interest. The mean diffusion coefficient (MD), anisotropic fraction (FA) and appearance of deep gray matter nucleus in patients with acute carbon monoxide intoxication were analyzed. It found that the change of diffusion coefficient (ADC) and its clinical correlation with cognitive impairment were generated by carbon monoxide intoxication. RESULTS: Compared with the healthy control group, the FA values of bilateral globus pallidus, hippocampus, dater nucleus and putamen decreased, while the FA values of amygdala and thalamus had no statistical significance; the MD values and ADC values of hippocampus, globus pallidus and putamen increased, while the MD and ADC values of dater nucleus, thalamus and amygdala had no statistical significance, either. CONCLUSION: DTI is capable of sensitively reflecting the damage of gray matter nuclei caused by acute carbon monoxide intoxication and quantifying the degree of hypoxic brain damage in a certain extent, and may be related to cognitive impairment.[Abstract] [Full Text] [Related] [New Search]