These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AC dielectrophoretic deformable particle-particle interactions and their relative motions. Author: Zhou T, Ji X, Shi L, Zhang X, Song Y, Joo SW. Journal: Electrophoresis; 2020 Jun; 41(10-11):952-958. PubMed ID: 31529708. Abstract: This paper develops a numerical simulation model to research the deformable particle-particle interactions caused by dielectrophoresis (DEP) under AC electric fields. The DEP force is calculated by using Maxwell stress tensor method, and the hydrodynamic force is obtained by calculating the hydrodynamic stress tensor. Simulation results show that the DEP interactive motion will facilitate the particles forming particle chains that are parallel to the electric field, and the particles with low shear modulus present a lower x-component velocity. Also, the electric field intensity and particles radius have some effects on the DEP motions, and for different particles, smaller particles with larger electric field intensity easily reach a larger velocity. The numerical research may provide universal guidance for biological cells manipulation and assembly.[Abstract] [Full Text] [Related] [New Search]