These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three-Coordinate Iron(0) Complexes with N-Heterocyclic Carbene and Vinyltrimethylsilane Ligation: Synthesis, Characterization, and Ligand Substitution Reactions.
    Author: Cheng J, Chen Q, Leng X, Ye S, Deng L.
    Journal: Inorg Chem; 2019 Oct 07; 58(19):13129-13141. PubMed ID: 31536336.
    Abstract:
    Low-coordinate iron(0) species are implicated as intermediates in a range of iron-catalyzed organic transformations. Isolable iron(0) complexes with coordination numbers of less than four, however, are rarely known. In continuing with our interests in three-coordinate iron(0) complexes with N-heterocyclic carbene (NHC) and alkene ligation, we report herein the synthesis and ligand substitution reactivity of three-coordinate iron(0) complexes featuring monodentate alkene ligands, [(NHC)Fe(η2-vtms)2] (vtms = vinyltrimethylsilane, NHC = 1,3-bis(2',6'-diisopropylphenyl)-imidazol-2-ylidene (IPr), 1; 1,3-bis(2',6'-diisopropylphenyl)-4,5-tetramethylene-imidazol-2-ylidene (cyIPr), 2; 1,3-bis(2',6'-diisopropylphenyl)-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidene (7-IPr), 3). Complexes 1-3 were synthesized from the one-pot reactions of ferrous dihalides with the N-(2,6-diisopropylphenyl)-substituted NHC ligands, vtms, and KC8. Reactivity study of 1 revealed its facile ligand substitution reactions with terminal aryl alkynes, ketones, isocyanides, and CO, by which iron(0) complexes [(IPr)Fe(η2-HCCAr)] (Ar = Ph, 5; p-CH3C6H4, 6; 3,5-(CF3)2C6H3, 7), [(IPr)Fe(η2-OCPh2)2] (8), [(IPr)Fe(CNR)4] (R = 2,6-Me2C6H3, 9; But, 10), and (IPr)Fe(CO)4 (11) were prepared in good yields. These iron(0) complexes have been characterized by 1H NMR, solution magnetic susceptibility measurement, single-crystal X-ray diffraction study, 57Fe Mössbauer spectroscopy, and elemental analysis. Characterization data and computational studies suggest S = 1 ground-spin states for three-coordinate iron(0) complexes 1-3 and 5-8 and S = 0 ground states for 9-11. Theoretical studies on the three-coordinate complexes 1, 6, and 8 indicated pronounced metal-to-ligand backdonation from occupied Fe 3d orbitals to the π* orbitals of the C═C, C≡C, and C═O moieties of the π ligands. In addition, 1 proved an effective precatalyst for the cyclotrimerization reaction of alkynes.
    [Abstract] [Full Text] [Related] [New Search]