These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Author: Sørli JB, Låg M, Ekeren L, Perez-Gil J, Haug LS, Da Silva E, Matrod MN, Gützkow KB, Lindeman B. Journal: Toxicol In Vitro; 2020 Feb; 62():104656. PubMed ID: 31536757. Abstract: The toxicity of some per- and polyfluoroalkyl substances (PFASs), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) has been studied thoroughly, showing that systemic PFASs targets the lungs. However, regulators lack data to assess the impact of other PFASs on the lungs and alternative methods to test substances for lung toxicity are needed. We combined two in vitro models to assess toxicity to the respiratory system; i) a lung surfactant (LS) function assay to assess the acute inhalation toxicity potential, and ii) a cell model with human bronchial epithelial cells to study pro-inflammatory potential and modulation of inflammatory responses. We tested salts of four PFASs: perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), PFOS, and PFOA as well as the fluorotelomer 8:2 FTOH. The results show that PFHxS, PFOA and PFOS can inhibit LS function. High PFOS concentrations induced a pro-inflammatory response, measured as increased IL-1α/β release. Moderate concentrations of PFOS suppressed release of the chemokines CXCL8 and CXCL10, whereas both PFOS and PFOA stimulated the release of the pro-inflammatory cytokine IL-1β in immune stimulated human bronchial epithelial cells. These findings support the concern that some PFASs may increase the risk of acute lung toxicity and of airway infections.[Abstract] [Full Text] [Related] [New Search]