These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new simple electrochemical method for the determination of Bisphenol A using bentonite as modifier.
    Author: Alves TS, Santos JS, Fiorucci AR, Arruda GJ.
    Journal: Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110048. PubMed ID: 31546367.
    Abstract:
    A simple, inexpensive, highly sensitive, selective, and novel electrochemical method was developed for determination of the Bisphenol A in samples of tap water, blood serum, and urine using a bentonite-modified carbon paste electrode. The graphite, bentonite and the working electrodes (without and chemically modified) were characterized by scanning electron microscopy, infrared absorption spectroscopy, and X-ray diffraction. The electrodes were electrochemically characterized using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The studied electrochemical variables were: electrode area, standard heterogeneous rate constant, charge transfer coefficient and double-layer capacitance. The bentonite as a sensor modifier had a strong influence on these variables. For the development of the methodology to quantify Bisphenol A, the instrumental parameters (frequency, amplitude, and step potential) and experimental parameters (pH, bentonite quantity) were optimized. The analytical curve to Bisphenol showed a linear response of the oxidation peak current intensity vs. the concentration in the range of 6.8 × 10-10 to 1.5 × 10-8 mol mL-1, with a limit of detection (LOD) of 2.11 × 10-11 mol mL-1 and limit of quantification (LOQ) of 7.04 × 10-11 mol mL-1. Recovery experiments were performed by adding known amounts of Bisphenol A in tap water, blood serum, and urine samples. Recovery rates using the standard addition method were in the range of 97.8-101.8%. The results demonstrated the method feasibility for quantifying Bisphenol A in these samples.
    [Abstract] [Full Text] [Related] [New Search]