These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Author: Gupta A, Singh AK, Kumar R, Ganguly R, Rana HK, Pandey PK, Sethi G, Bishayee A, Pandey AK. Journal: Molecules; 2019 Sep 19; 24(18):. PubMed ID: 31546767. Abstract: Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis. Corilagin-induced apoptosis and autophagic cell death depends on production of intracellular reactive oxygen species in breast cancer cell line. It blocks the activation of both the canonical Smad and non-canonical extracellular-signal-regulated kinase/Akt (protein kinase B) pathways. The potential apoptotic action of corilagin is mediated by altered expression of procaspase-3, procaspase-8, procaspase-9, poly (ADP ribose) polymerase, and Bcl-2 Bax. In nude mice, corilagin suppressed cholangiocarcinoma growth and downregulated the expression of Notch1 and mammalian target of rapamycin. The aim of this review is to summarize the anticancer efficacy of corilagin with an emphasis on the molecular mechanisms involving various signaling pathways in tumor cells.[Abstract] [Full Text] [Related] [New Search]