These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Breathing New Life into TRAIL for Breast Cancer Therapy: Co-Delivery of pTRAIL and Complementary siRNAs Using Lipopolymers.
    Author: Thapa B, Kc R, Bahniuk M, Schmitke J, Hitt M, Lavasanifar A, Kutsch O, Seol DW, Uludag H.
    Journal: Hum Gene Ther; 2019 Dec; 30(12):1531-1546. PubMed ID: 31547718.
    Abstract:
    Preclinical studies showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is safe and effective to combat cancers, but clinical outcomes have been less than optimal due to short half-life of TRAIL protein, insufficient induction of apoptosis, and TRAIL resistance displayed in many tumors. In this study, we explored co-delivery of a TRAIL expressing plasmid (pTRAIL) and complementary small interfering RNAs (siRNAs) (silencing Bcl2-like 12 [BCL2L12] and superoxide dismutase 1 [SOD1]) to improve the response of breast cancer cells against TRAIL therapy. It is desirable to co-deliver the pDNA along with siRNA using a single delivery agent, but this is challenging given different structures of long/flexible pDNA and short/rigid siRNA. Toward this goal, we identified an aliphatic lipid-grafted low-molecular weight polyethylenimine (PEI) that accommodated both pDNA and siRNA in a single complex. The co-delivery of pTRAIL with BCL2L12- or SOD1-specific siRNAs resulted more significant cell death in different breast cancer cells compared with separate delivery without affecting nonmalignant cells viability. Ternary complexes of lipopolymer with pTRAIL and BCL2L12 siRNA significantly retarded the growth of breast cancer xenografts in mice. The enhanced anticancer activity was attributed to increased in situ secretion of TRAIL and sensitization of breast cancer cells against TRAIL by the co-delivered siRNAs. The lipid-grafted PEIs capable of co-delivering multiple types of nucleic acids can serve as powerful carriers for more effective complementary therapeutics. Graphical Abstract [Figure: see text].
    [Abstract] [Full Text] [Related] [New Search]