These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FePt@MnO-Based Nanotheranostic Platform with Acidity-Triggered Dual-Ions Release for Enhanced MR Imaging-Guided Ferroptosis Chemodynamic Therapy. Author: Yang B, Liu Q, Yao X, Zhang D, Dai Z, Cui P, Zhang G, Zheng X, Yu D. Journal: ACS Appl Mater Interfaces; 2019 Oct 23; 11(42):38395-38404. PubMed ID: 31554396. Abstract: Reactive oxygen species (ROS)-based anticancer therapy methods were heavily dependent on specific tumor microenvironments such as acidity and excess hydrogen peroxide (H2O2). In this work, an acidity-sensitive nanotheranostic agent (FePt@MnO)@DSPE-PEG5000-FA (FMDF NPs) was successfully constructed for MR imaging guided ferroptosis chemodynamic therapy (FCDT) of cancer. The FMDF NPs could specifically target folic acid (FA) receptor-positive tumor cells (HeLa etc.) and induce ferroptosis efficiently by rapidly releasing active Fe2+ to catalyze intracellular H2O2 into ROS based on Fenton reaction. On the other hand, the Mn2+ could also be released due to acidity and further coordinate with GSH to enhance the longitudinal-transverse relaxivity (T1/T2-weighted MR imaging), which could obviously strengthen the contrast distinction between solid tumors and the surrounding tissue to accurately real-time monitor the tumor location. Furthermore, the in vivo anticancer study revealed that the growth of solid tumor models could be suppressed remarkably after treating with FMDF NPs and no obvious damage to other major organs. Therefore, the FMDF NPs were competent simultaneously as an enhanced imaging diagnosis contrast agent and efficient therapy agent for promoting more precise and effective treatment in the bionanomedicine field.[Abstract] [Full Text] [Related] [New Search]