These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Perioperative beta-blockers for preventing surgery-related mortality and morbidity in adults undergoing non-cardiac surgery. Author: Blessberger H, Lewis SR, Pritchard MW, Fawcett LJ, Domanovits H, Schlager O, Wildner B, Kammler J, Steinwender C. Journal: Cochrane Database Syst Rev; 2019 Sep 26; 9(9):CD013438. PubMed ID: 31556094. Abstract: BACKGROUND: Randomized controlled trials (RCTs) have yielded conflicting results regarding the ability of beta-blockers to influence perioperative cardiovascular morbidity and mortality. Thus routine prescription of these drugs in an unselected population remains a controversial issue. A previous version of this review assessing the effectiveness of perioperative beta-blockers in cardiac and non-cardiac surgery was last published in 2018. The previous review has now been split into two reviews according to type of surgery. This is an update, and assesses the evidence in non-cardiac surgery only. OBJECTIVES: To assess the effectiveness of perioperatively administered beta-blockers for the prevention of surgery-related mortality and morbidity in adults undergoing non-cardiac surgery. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, Biosis Previews and Conference Proceedings Citation Index-Science on 28 June 2019. We searched clinical trials registers and grey literature, and conducted backward- and forward-citation searching of relevant articles. SELECTION CRITERIA: We included RCTs and quasi-randomized studies comparing beta-blockers with a control (placebo or standard care) administered during the perioperative period to adults undergoing non-cardiac surgery. If studies included surgery with different types of anaesthesia, we included them if 70% participants, or at least 100 participants, received general anaesthesia. We excluded studies in which all participants in the standard care control group were given a pharmacological agent that was not given to participants in the intervention group, studies in which all participants in the control group were given a beta-blocker, and studies in which beta-blockers were given with an additional agent (e.g. magnesium). We excluded studies that did not measure or report review outcomes. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, extracted data, and assessed risks of bias. We assessed the certainty of evidence with GRADE. MAIN RESULTS: We included 83 RCTs with 14,967 participants; we found no quasi-randomized studies. All participants were undergoing non-cardiac surgery, and types of surgery ranged from low to high risk. Types of beta-blockers were: propranolol, metoprolol, esmolol, landiolol, nadolol, atenolol, labetalol, oxprenolol, and pindolol. In nine studies, beta-blockers were titrated according to heart rate or blood pressure. Duration of administration varied between studies, as did the time at which drugs were administered; in most studies, it was intraoperatively, but in 18 studies it was before surgery, in six postoperatively, one multi-arm study included groups of different timings, and one study did not report timing of drug administration. Overall, we found that more than half of the studies did not sufficiently report methods used for randomization. All studies in which the control was standard care were at high risk of performance bias because of the open-label study design. Only two studies were prospectively registered with clinical trials registers, which limited the assessment of reporting bias. In six studies, participants in the control group were given beta-blockers as rescue therapy during the study period.The evidence for all-cause mortality at 30 days was uncertain; based on the risk of death in the control group of 25 per 1000, the effect with beta-blockers was between two fewer and 13 more per 1000 (risk ratio (RR) 1.17, 95% confidence interval (CI) 0.89 to 1.54; 16 studies, 11,446 participants; low-certainty evidence). Beta-blockers may reduce the incidence of myocardial infarction by 13 fewer incidences per 1000 (RR 0.72, 95% CI 0.60 to 0.87; 12 studies, 10,520 participants; low-certainty evidence). We found no evidence of a difference in cerebrovascular events (RR 1.65, 95% CI 0.97 to 2.81; 6 studies, 9460 participants; low-certainty evidence), or in ventricular arrhythmias (RR 0.72, 95% CI 0.35 to 1.47; 5 studies, 476 participants; very low-certainty evidence). Beta-blockers may reduce atrial fibrillation or flutter by 26 fewer incidences per 1000 (RR 0.41, 95% CI 0.21 to 0.79; 9 studies, 9080 participants; low-certainty evidence). However, beta-blockers may increase bradycardia by 55 more incidences per 1000 (RR 2.49, 95% CI 1.74 to 3.56; 49 studies, 12,239 participants; low-certainty evidence), and hypotension by 44 more per 1000 (RR 1.40, 95% CI 1.29 to 1.51; 49 studies, 12,304 participants; moderate-certainty evidence).We downgraded the certainty of the evidence owing to study limitations; some studies had high risks of bias, and the effects were sometimes altered when we excluded studies with a standard care control group (including only placebo-controlled trials showed an increase in early mortality and cerebrovascular events with beta-blockers). We also downgraded for inconsistency; one large, well-conducted, international study found a reduction in myocardial infarction, and an increase in cerebrovascular events and all-cause mortality, when beta-blockers were used, but other studies showed no evidence of a difference. We could not explain the reason for the inconsistency in the evidence for ventricular arrhythmias, and we also downgraded this outcome for imprecision because we found few studies with few participants. AUTHORS' CONCLUSIONS: The evidence for early all-cause mortality with perioperative beta-blockers was uncertain. We found no evidence of a difference in cerebrovascular events or ventricular arrhythmias, and the certainty of the evidence for these outcomes was low and very low. We found low-certainty evidence that beta-blockers may reduce atrial fibrillation and myocardial infarctions. However, beta-blockers may increase bradycardia (low-certainty evidence) and probably increase hypotension (moderate-certainty evidence). Further evidence from large placebo-controlled trials is likely to increase the certainty of these findings, and we recommend the assessment of impact on quality of life. We found 18 studies awaiting classification; inclusion of these studies in future updates may also increase the certainty of the evidence.[Abstract] [Full Text] [Related] [New Search]