These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets.
    Author: Lapetina EG, Reep B, Ganong BR, Bell RM.
    Journal: J Biol Chem; 1985 Feb 10; 260(3):1358-61. PubMed ID: 3155733.
    Abstract:
    The ability of exogenous sn-1,2-diacylglycerols and analogs to function as bioregulators of protein kinase C in human platelets was investigated. The activation of protein kinase C in platelets is indicated by specific phosphorylation of a 40,000-dalton protein. Dihexanoylglycerol, dioctanoylglycerol (diC8), didecanoylglycerol, and sn-1-oleoyl-2-acetylglycerol were active in stimulating 40,000-dalton protein phosphorylation. Only a trace of phosphorylation was elicited by dibutyrylglycerol. Phosphorylation was not induced by analogs of diC8 in which an -H, -SH, or -Cl group replaced the free -OH, nor by monoacylglycerols or long chain diacylglycerols. Maximum phosphorylation was induced by dihexanoylglycerol, diC8, and didecanoylglycerol at concentrations from 5 to 20 microM and between 5 and 30 S after exposure of platelets to these diacylglycerols. Under conditions of maximal phosphorylation of the 40,000-dalton protein, these diacylglycerols did not induce phosphatidylinositol turnover, or platelet aggregation, or stimulate release of ATP or serotonin. A small degree of aggregation was evident with platelets isolated in the absence of prostacyclin, and release of serotonin was observed when 1 mM Ca2+ or submaximal concentrations of ionophore A23187 were included. These results are consistent with a model in which platelet activation requires the simultaneous formation of two intracellular signals, diacylglycerols and Ca2+. These diacylglycerols and diacylglycerol analogs provide useful tools to investigate the function of diacylglycerols as bioregulators in intact cells.
    [Abstract] [Full Text] [Related] [New Search]