These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of arm motion on standing lateral jumps.
    Author: Ashby BM, Sohel AA, Alderink GJ.
    Journal: J Biomech; 2019 Nov 11; 96():109339. PubMed ID: 31561909.
    Abstract:
    The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.
    [Abstract] [Full Text] [Related] [New Search]