These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The pseudosubstrate inhibitor Acm1 inhibits the anaphase-promoting complex/cyclosome by combining high-affinity activator binding with disruption of Doc1/Apc10 function. Author: Qin L, Mizrak A, Guimarães DSPSF, Tambrin HM, Morgan DO, Hall MC. Journal: J Biol Chem; 2019 Nov 15; 294(46):17249-17261. PubMed ID: 31562243. Abstract: The anaphase-promoting complex/cyclosome (APC/C) is a large, multisubunit ubiquitin ligase involved in regulation of cell division. APC/C substrate specificity arises from binding of short degron motifs in its substrates to transient activator subunits, Cdc20 and Cdh1. The destruction box (D-box) is the most common APC/C degron and plays a crucial role in substrate degradation by linking the activator to the Doc1/Apc10 subunit of core APC/C to stabilize the active holoenzyme and promote processive ubiquitylation. Degrons are also employed as pseudosubstrate motifs by APC/C inhibitors, and pseudosubstrates must bind their cognate activators tightly to outcompete substrate binding while blocking their own ubiquitylation. Here we examined how APC/C activity is suppressed by the small pseudosubstrate inhibitor Acm1 from budding yeast (Saccharomyces cerevisiae). Mutation of a conserved D-box converted Acm1 into an efficient ABBA (cyclin A, BubR1, Bub1, Acm1) motif-dependent APC/CCdh1 substrate in vivo, suggesting that this D-box somehow inhibits APC/C. We then identified a short conserved sequence at the C terminus of the Acm1 D-box that was necessary and sufficient for APC/C inhibition. In several APC/C substrates, the corresponding D-box region proved to be important for their degradation despite poor sequence conservation, redefining the D-box as a 12-amino acid motif. Biochemical analysis suggested that the Acm1 D-box extension inhibits reaction processivity by perturbing the normal interaction with Doc1/Apc10. Our results reveal a simple, elegant mode of pseudosubstrate inhibition that combines high-affinity activator binding with specific disruption of Doc1/Apc10 function in processive ubiquitylation.[Abstract] [Full Text] [Related] [New Search]