These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest. Author: Liu M, Li Y, Gao S, Yan S, Zhang Q, Liu G, Ji B. Journal: J Thorac Cardiovasc Surg; 2020 Jun; 159(6):2431-2444.e7. PubMed ID: 31564537. Abstract: BACKGROUND: Neuroinflammation acts as a contributor to neurologic deficits after deep hypothermic circulatory arrest. However, the molecular mechanism remains unclear. This study postulates that cold-inducible RNA-binding protein can promote deep hypothermic circulatory arrest-induced neuroinflammation. METHODS: Rats were randomly assigned into 3 groups (n = 5, each group): sham group, deep hypothermic circulatory arrest group, and deep hypothermic circulatory arrest + Cirp-/- group (Cirp-/- group). Murine microglial BV2 cells were administered by adeno-associated viral vectors containing cold-inducible RNA-binding protein small interference RNA or negative control small interference RNA at 2 days before 4-hour oxygen-glucose deprivation at 18°C. Microglial activation, cell death, neuroinflammation, and related protein expression were assessed in tissue samples and cell cultures. RESULTS: Cold-inducible RNA-binding protein was elevated along with evident neuroinflammation and neuronal damage in rats exposed to deep hypothermic circulatory arrest. In Cirp-/- rats, histologic injury (3.00 [interquartile range, 2.00-3.00] vs 1.00 [interquartile range, 1.00-1.50] neuropathological score, P < .001) and microglial activation (40 ± 4 vs 13 ± 7 CA1 area, P < .001) were alleviated after deep hypothermic circulatory arrest. With RNA-sequencing analysis, this associated with reduction of key proinflammatory cytokines induced by inhibiting Brd2-NF-κB signals. In BV2 cells treated with small interference RNA-cold-inducible RNA-binding protein, similar protective effects were observed, including decreased proinflammatory cytokines and cytotoxicity. Brd2-NF-κB signals were confirmed by the addition of Brd2 inhibitor JQ1. Notably, the conditioned medium from BV2 cells transfected with small interference RNA cold-inducible RNA-binding protein significantly reduced apoptosis in neural SH-SY5Y cells after oxygen-glucose deprivation, which was similar to that after JQ1 administration. CONCLUSIONS: Enhanced cold-inducible RNA-binding protein in microglia aggravates neuronal injury by promoting the release of proinflammatory cytokines, which might be mediated through Brd2-NF-κB signals during deep hypothermic circulatory arrest.[Abstract] [Full Text] [Related] [New Search]