These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Precision pH Sensor Based on WO3 Nanofiber-Polymer Composites and Differential Amplification.
    Author: Choi SJ, Savagatrup S, Kim Y, Lang JH, Swager TM.
    Journal: ACS Sens; 2019 Oct 25; 4(10):2593-2598. PubMed ID: 31573180.
    Abstract:
    We report a new type of potentiometric pH sensor with sensitivity exceeding the theoretical Nernstian behavior (-59.1 mV/pH). For the pH-sensitive electrode, 1D tungsten oxide (WO3) nanofibers (NFs) were prepared to obtain large surface area and high porosity. These NFs were then stabilized in a reactive porous chloromethylated triptycene poly(ether sulfone) (Cl-TPES) binder, to facilitate proton diffusion into the polymer membrane. The measurements were performed with a differential amplifier using matched MOSFETs and providing a 10-fold amplified signal over a simple potentiometric determination. A high pH sensitivity of -377.5 mV/pH and a linearity of 0.9847 were achieved over the pH range of 6.90-8.94. Improved signal-to-noise ratios with large EMF signal changes of 175 mV were obtained in artificial seawater ranging pH 8.07-7.64 (ΔpH = 0.43), which demonstrates a practical application for pH monitoring in ocean environments.
    [Abstract] [Full Text] [Related] [New Search]