These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rate-limiting step in the actomyosin adenosinetriphosphatase cycle: studies with myosin subfragment 1 cross-linked to actin.
    Author: Stein LA, Greene LE, Chock PB, Eisenberg E.
    Journal: Biochemistry; 1985 Mar 12; 24(6):1357-63. PubMed ID: 3157401.
    Abstract:
    Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which we previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, we determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306]. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. We found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]