These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Author: Wang Z, Wang SP, Shao Q, Li PF, Sun Y, Luo LZ, Yan XQ, Fan ZY, Hu J, Zhao J, Hang PZ, Du ZM. Journal: Free Radic Biol Med; 2019 Dec; 145():187-197. PubMed ID: 31574344. Abstract: Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is associated with ischemic heart diseases (IHD). 7,8-dihydroxyflavone (7,8-DHF), BDNF mimetic, is a potent agonist of TrkB. We aimed to investigate the effects and the underlying mechanisms of 7,8-DHF on cardiac ischemia. Myocardial ischemic mouse model was induced by ligation of left anterior descending coronary artery. 7,8-DHF (5 mg/kg) was administered intraperitoneally two days after ischemia for four weeks. Echocardiography, HE staining and transmission electron microscope were used to examine the function, histology and ultrastructure of the heart. H9c2 cells were treated with hydrogen peroxide (H2O2), 7,8-DHF or TrkB inhibitor ANA-12. The effects of 7,8-DHF on cell viability, mitochondrial membrane potential (MMP) and mitochondrial superoxide generation were examined. Furthermore, mitochondrial fission and protein expression of mitochondrial dynamics (Mfn2 [mitofusin 2], OPA1 [optic atrophy 1], Drp1 [dynamin-related protein 1] and Fis-1 [fission 1]) was detected by mitotracker green staining and western blot, respectively. 7,8-DHF attenuated cardiac dysfunction and cardiomyocyte abnormality of myocardial ischemic mice. Moreover, 7,8-DHF increased cell viability and reduced cell death accompanied by improving MMP, inhibiting mitochondrial superoxide and preventing excessive mitochondrial fission of H2O2-treated H9c2 cells. The cytoprotective effects of 7,8-DHF were antagonized by ANA-12. Mechanistically, 7,8-DHF repressed OMA1-dependent conversion of L-OPA1 into S-OPA1, which was abolished by Akt inhibitor. In conclusion, 7,8-DHF protects against cardiac ischemic injury by inhibiting the proteolytic cleavage of OPA1. These findings provide a novel pharmacological effect of 7,8-DHF on mitochondrial dynamics and a new potential target for IHD.[Abstract] [Full Text] [Related] [New Search]