These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Environmental drivers of paralytic shellfish toxin producing Alexandrium catenella blooms in a fjord system of northern Southeast Alaska.
    Author: Tobin ED, Wallace CL, Crumpton C, Johnson G, Eckert GL.
    Journal: Harmful Algae; 2019 Sep; 88():101659. PubMed ID: 31582155.
    Abstract:
    Paralytic shellfish poisoning (PSP) is a persistent problem that threatens human health and the availability of shellfish resources in Alaska. Regular outbreaks of marine dinoflagellates in the genus Alexandrium produce paralytic shellfish toxins (PSTs) that make shellfish consumption unsafe, and impose economic hardships on Alaska's shellfish industry. Phytoplankton and environmental monitoring spanning 2008-2016, and a pilot benthic cyst survey in 2016, were focused in the Juneau region of Southeast Alaska to investigate Alexandrium catenella distributions and conditions favorable to bloom development. Overwintering Alexandrium cysts were found in near-shore sediments throughout the study region. Alexandrium catenella cells were present in the water column across a range of sea surface temperatures (7-15 °C) and surface salinities (S = 4-30); however, an optimal temperature/salinity window (10-13 °C, 18-23) supported highest cell concentrations. Measurable levels of PSTs were associated with lower concentrations (100 cells L-1) of A. catenella, indicating high cell densities may not be required for shellfish toxicity to occur. Several interacting local factors were identified to support A. catenella blooms: 1) sea surface temperatures ≥7 °C; 2) increasing air temperature; 3) low to moderate freshwater discharge; and 4) several consecutive days of dry and calm weather. In combination, these bloom favorable conditions coincide with toxic bloom events during May and June in northern Southeast Alaska. These findings highlight how integrated environmental and phytoplankton monitoring can be used to enhance early warning capacity of toxic bloom events, providing more informed guidance to shellfish harvesters and resource managers in Alaska.
    [Abstract] [Full Text] [Related] [New Search]