These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species.
    Author: Chen B, Xie S, Zhang X, Zhang N, Feng H, Sun C, Lu X, Shao Y.
    Journal: Pest Manag Sci; 2020 Apr; 76(4):1313-1323. PubMed ID: 31603616.
    Abstract:
    BACKGROUND: Many insect pests rely on microbial symbionts to obtain nutrients or for defence, thereby allowing them to exploit novel food sources and degrade environmental xenobiotics, including pesticides. Although Lepidoptera is one of the most diverse insect taxa and includes important agricultural pests, lepidopteran microbiotas, particularly functional traits, have not been studied widely. Here, we provide a comprehensive characterization of the gut microbiota across multiple mulberry-feeding lepidopteran species, resolving both community structure and metabolic potential. RESULTS: Our results indicate abundant bacteria inside the gut of larval Lepidoptera. However, even though they were fed the same diet, the structures of the bacterial communities differed in four major mulberry pest species, suggesting host-specific effects on microbial associations. Community-level metabolic reconstructions further showed that although taxonomic composition varied greatly, carbohydrate and amino acid metabolism and membrane transporter were key functional capabilities of the gut bacteria in all samples, which may play basic roles in the larval gut. In addition, principal coordinate analysis (PCoA) of gut bacterial-predicted gene ontologies revealed specialized features of the microbiota associated with these mulberry pests, which were divided into two distinct clusters (macrolepidopterans and microlepidopterans). This pattern became even more prominent when further Lepidoptera species were involved. CONCLUSIONS: A suite of gut microbiota metabolic functions significantly correlated with larval size; the metabolism of terpenoids and polyketides, xenobiotics biodegradation and metabolism were specifically enriched in large species, while small larvae had enhanced nucleotide metabolism. Our report paves the way for uncovering the correlation between host phenotype and microbial symbiosis in this notorious insect pest group. © 2019 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]