These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of novel non-nucleoside vinyl-stilbene analogs as potent norovirus replication inhibitors with a potential host-targeting mechanism. Author: Harmalkar DS, Lee SJ, Lu Q, Kim MI, Park J, Lee H, Park M, Lee A, Lee C, Lee K. Journal: Eur J Med Chem; 2019 Dec 15; 184():111733. PubMed ID: 31604163. Abstract: Norovirus (NV), is the most common cause of acute gastroenteritis worldwide. To date, there is no specific anti-NV drug or vaccine to treat NV infections. In this study, we evaluated the inhibitory effect of different stilbene-based analogs on RNA genome replication of human NV (HNV) using a virus replicon-bearing cell line (HG23). Initial screening of our in-house chemical library against NV led to the identification of a hit containing stilbene scaffold 5 which on initial optimization gave us a vinyl stilbene compound 16c (EC50 = 4.4 μM). Herein we report our structure-activity relationship study of the novel series of vinyl stilbene analogs that inhibits viral RNA genome replication in a human NV-specific manner. Among these newly synthesized compounds, several amide derivatives of vinyl stilbenes exhibited potent anti-NV activity with EC50 values ranging from 1 to 2 μM. A trans-vinyl stilbenoid with an appended substituted piperazine amide (18k), exhibited potent anti-NV activity and also displayed favorable metabolic stability. Compound 18k demonstrated an excellent safety profile, the highest suppressive effect, and was selective for HNV replication via a viral RNA polymerase-independent manner. Its potential host-targeting antiviral mechanism was further supported by specific activation of heat shock factor 1-dependent stress-inducible pathway by 18k. These results suggest that 18k might be a promising lead compound for developing novel NV inhibitors with the novel antiviral mechanism.[Abstract] [Full Text] [Related] [New Search]