These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide. Author: Tan Z, Cao L, Yang Y, Yan Q, Liu Q, Zhang W, Zhao P, Li Y, Zhang D. Journal: Mikrochim Acta; 2019 Oct 12; 186(11):693. PubMed ID: 31605244. Abstract: A composite nanoenzyme was used in a sandwich-type electrochemical immunoassay for the carcinoembryonic antigen (CEA). Hierarchically porous palladium nanospheres (Pd NPs) were functionalized with glutathione-capped gold nanoparticles (G-Au NPs) and then loaded onto graphene oxide (GO) to obtain a peroxidase mimicking nanoenzyme of type GO-supported G-Au/Pd. The composite can catalyze the oxidation of the substrate tetramethylbenzidine (TMB) by H2O2 to give blue-colored oxidized TMB within only 20 s. This strong peroxidase activity, good conductivity and high specific surface area of the material make it a useful label for secondary antibodies (Ab2) for the detection of CEA. The cotton-like electrodeposited gold nanoparticles with good electrical conductivity were used to immobilize primary antibody (Ab1). The amperometric immunoassay has a detection range that extends from 10 fg·mL-1 to 100 ng·mL-1 at a working potential of -0.4 V with addition of 5 mmol·L-1 H2O2 as electrochemically active substrate, and the detection limit is as low as 3.2 fg·mL-1 (S/N = 3). Graphical abstract Schematic of sandwich electrochemical immunosensor for the carcinoembryonic antigen. Electrodeposited gold used as substrate material, and Graphene oxide supported G-Au NPs functionalized porous Pd nanospheres (GO supported G-Au/Pd) as signal amplification platform, which catalyze the oxidation of tetramethylbenzidine (TMB).[Abstract] [Full Text] [Related] [New Search]